From 1 - 10 / 10
  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html; IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx; HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used ("base scenario"; PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html; IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx; HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was modified in order to comply with BASP (Baltic Sea Action Plan) targets (PhosWaM SWAT case "15"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html; IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx; HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used (PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v05" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html; IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx; HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was calculated and a Maximum Technical Feasible Reduction (MTFR) approach was applied (PhosWaM SWAT case "35"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A).

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used ("base scenario"; PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). Technical details: model run on MPP1 Cluster of the HLRN-III Konrad Comlpex each simulation performed on 527 cores distributed on 22 nodes (24 cores per node; one core on one node not used) configuration of one node: Processor: 2x Intel Xeon E5-2695v2 CPUs (12 cores per CPU), R_peak: 230 GFlop/s RAM: 64 GiB DDR3-1866 OS: SuSE Linux Enterprise Server (SLES) version 11 Interconnect: Cray Aries

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was modified in order to comply with BASP (Baltic Sea Action Plan) targets (PhosWaM SWAT case "15"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). Technical details: model run on MPP1 Cluster of the HLRN-III Konrad Comlpex each simulation performed on 527 cores distributed on 22 nodes (24 cores per node; one core on one node not used) configuration of one node: Processor: 2x Intel Xeon E5-2695v2 CPUs (12 cores per CPU), R_peak: 230 GFlop/s RAM: 64 GiB DDR3-1866 OS: SuSE Linux Enterprise Server (SLES) version 11 Interconnect: Cray Aries

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was calculated and a Maximum Technical Feasible Reduction (MTFR) approach was applied (PhosWaM SWAT case "35"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v04" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). Technical details: model run on MPP1 Cluster of the HLRN-III Konrad Comlpex each simulation performed on 527 cores distributed on 22 nodes (24 cores per node; one core on one node not used) configuration of one node: Processor: 2x Intel Xeon E5-2695v2 CPUs (12 cores per CPU), R_peak: 230 GFlop/s RAM: 64 GiB DDR3-1866 OS: SuSE Linux Enterprise Server (SLES) version 11 Interconnect: Cray Aries

  • A marine physical biogeochemical model simulation was performed with the model MOM-ERGOM for the years 1995 to 2014 covering the Baltic Sea. Previously, MOM-ERGOM had been initialized for several decades without tagging until 1984 and, then, from 1985 to 1994 with tagging (see below). The model output has been validated with measurement data of the "IOW Baltic Monitoring and long-term data program" (https://www.io-warnemuende.de/iowdb.html IOW: Leibniz Institute for Baltic Sea Research Warnemünde) and from the HELCOM database (http://ocean.ices.dk/helcom/Helcom.aspx HELCOM: Helsinki Commission). The model simulation was forced by coastDat2 COSMO-CLM data (doi:10.1594/WDCC/coastDat-2_COSMO-CLM). Riverine phosphorus input of the Warnow River was calculated with the Soil & Water Assessment Tool (SWAT; Bauwe et al., 2019, doi:10.1016/j.ecohyd.2019.03.003). Phosphorus from the Warnow River has been tagged in the model simulation according to a method by Menésguen et al. (2006, doi:10.4319/lo.2006.51.1_part_2.0591). Therefore, all phosphorus-containing model variables exist twice in the output: once as regular variables and once as tagged variable. The default phosphorus input by the Warnow River based on real phosphorus release patterns and real atmospheric conditions was used (PhosWaM SWAT case "ist"). The turnover of phosphorus compounds in the Unterwarnow was calculated based on the "Unterwarnow turnover estimation v05" (see final project report of PhosWaM for details). The simulation was performed at the North-German Supercomputing Alliance (HLRN). The model output data were processed and evaluated on servers provided by the project 'PROSO - Prozesse von Spurenstoffen in der Ostsee' (FKZ 03F0779A). Technical details: model run on MPP1 Cluster of the HLRN-III Konrad Comlpex each simulation performed on 527 cores distributed on 22 nodes (24 cores per node; one core on one node not used) configuration of one node: Processor: 2x Intel Xeon E5-2695v2 CPUs (12 cores per CPU), R_peak: 230 GFlop/s RAM: 64 GiB DDR3-1866 OS: SuSE Linux Enterprise Server (SLES) version 11 Interconnect: Cray Aries

  • For the development of the earth-system model ICON, carried out at the Max-Planck Institute for Meteorology in cooperation with the German meteorological service (DWD), the ocean compartment plays a major role. It is now used to push the frontiers of simulating the climate based on first principles by resolving its major energetic motions, including those at small scales such as eddies and waves in the ocean. This new development, however, still requires substantial efforts. One such a process is internal tides that are generated as (barotropic) tides flow over topographic features such as underwater ridges and sea mounts. To ensure a realistic representation of internal tides, one needs to make sure that the model used is capable to realistically simulate the tides. A set of experiments has been carried to assess the ability of ICON-O to simulate open ocean tides. Tides are tested in the global ocean model ICON-O in various horizontal resolutions: R2B6 (40km), R2B8 (10km), and BCT (BaseCampTelescope: a telescoping -inhomogeneous- grid ranging from 80km to 8km with a focus region in the South Atlantic). All runs are performed with a relatively high vertical resolution (128 vertical levels) and additionally the vertical coordinate z* is used and different heights of top levels are applied. To improve the simulated tides two new parameterizations are introduced in ICON-O. Self-Attraction and Loading (SAL) and a parameterization for Tidal-Bottom-Drag (TBD) are introduced individually and together in all 3 horizontal resolutions. 100 years of spin-up simulations with OMIP forcing and without tides have been performed for all set-ups. After the climate has spun-up reasonably, 3 more years of simulation now with tides have been performed. For the tides to spin-up, only the last year is evaluated. The raw model output (hourly sea surface elevation) and the spin-up runs are also available (see references). One year (the last) of the ICON-O simulation with tides is analyzed by the least-square-fitting method of Foreman et al. (2009). From this harmonic analysis the harmonic constants of the eight major diurnal and semi-diurnal tidal constituents (M2, S2, N2, K2, K1, O1, P1, and Q1) are derived. Phases and amplitudes on the original ICON-O grid (XX_harmonics.nc) and a regridded regular 0.1-degree grid (XX_harmonics_r3600x1800.nc) are archived.

  • VIKING20X-JRA-short (Biastoch et al., 2021) is part of a series of VIKING20X simulations under JRA55-do atmospheric forcing. It is based on a restart from a pre-spun experiment in 1980 (VIKING20X-CORE; see Biastoch et al., 2021) and integrated for the period 1980 to 2019 in the framework of the RACE–Synthesis: Regional Atlantic Circulation and Global Change (https://race-synthese.de). The applied atmospheric forcing JRA55-do (Tsujino et al., 2020, http://doi.org/10.5194/gmd-13-3643-2020) builds on the Japanese reanalysis product JRA-55 with improvements through the implementation of satellite and several other reanalysis products. Details of the Configuration: - eddy-rich 1/20° nest using the two-way nesting technique Adaptive Grid Refinement In Fortran (AGRIF; http://doi.org/10.1016/j.cageo.2007.01.009) that covers the Atlantic Ocean from 33.5° S to ∼65° N embedded in a 1/4° resolution global grid - initialization from a pre-spun experiment in 1980 - time step refinement factor 3 between host and nest - momentum advection scheme in vector form with Hollingsworth correction, conserving both energy and enstrophy - tracer advection as two-step flux corrected transport, total variance dissipation scheme - linearized filtered free surface - weak sea surface salinity restoring towards Levitus WOA98 (piston velocity 12.2 m/yr), suppressed under sea-ice - thermodynamic, dynamic sea-ice model LIM2 (https://doi.org/10.1029/97JC00480) with viscous-plastic rheology - turbulent kinetic energy scheme - bi-Laplacian lateral viscosity - non-linear bottom friction Note of advise on re-using the provided simulation output data We recommend to only use the high-resolution simulation output data from the 1/20 degree nested region for any analysis (nest file names "1_VIKING20X.L46-KKG36107B_*.nc"). The simulation was designed to improve the understanding of specific key processes in the Atlantic Ocean and their effect on the large scale and inter-hemispheric circulation in the Atlantic. The simulation results can only be interpreted in this context and are not necessarily applicable to other arbitrary research questions on ocean and climate dynamics. In particular, the output fields of the global simulation at coarser resolution (host file names "VIKING20X.L46-KKG36107B_*.nc") must be understood as an interactive boundary condition to the focus region of the nest and are here provided for completeness only. For questions in this regard we recommend to contact datamanagement@geomar.de and generally encourage potential users to reach out to us for clarification. A detailed description of the configuration and experiments is given in Biastoch et al. (2021): Biastoch, A., F. U. Schwarzkopf, K. Getzlaff, S. Rühs, T. Martin, M. Scheinert, T. Schulzki, P. Handmann, R. Hummels, and C. W. Böning, 2021, Regional Imprints of Changes in the Atlantic Meridional Overturning Circulation in the Eddy-rich Ocean Model VIKING20X, Ocean. Sci., 17, 1177–1211, http://doi.org/10.5194/os-17-1177-2021

Barrierefreiheit | Datenschutz | Impressum